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Abstract
The standard semiclassical calculation of transmission correlation functions
for chaotic systems is severely influenced by unitarity problems. We show
that unitarity alone imposes a set of relationships between cross section
correlation functions which go beyond the diagonal approximation. When
these relationships are properly used to supplement the semiclassical scheme
we obtain transmission correlation functions in full agreement with the exact
statistical theory and the experiment. Our approach also provides a novel
prediction for the transmission correlations in the case where time-reversal
symmetry is present.

PACS numbers: 0365S, 0545H, 1155

1. Introduction

Since the pioneering work of Blümel and Smilansky [1] the semiclassical S-matrix [2] has been
used by many authors to study fundamental questions related to quantum chaotic scattering.
In recent years the interest in this subject has grown due to the experimental investigation of
electronic transport through small devices, such as open quantum dots [3]. At sufficiently
low temperatures, these devices preserve quantum coherence and are called mesoscopic. The
conductance in transport processes that preserve quantum coherence is directly related to the
S-matrix by the Landauer–Büttiker formula [4]. Since the underlying classical electronic
dynamics in quantum dots is believed to be chaotic, these are excellent systems to observe the
quantum manifestations of classical chaotic scattering [5].

One of the central issues in mesoscopic physics is to single out statistical universal
properties of quantum systems. In this paper we show that this goal cannot be theoretically
achieved using the standard semiclassical S-matrix approach, since the latter is not able to
provide trustworthy results for universal cross section or conductance correlation functions.
We also show that this situation can be fixed by imposing a set of semiclassical sum rules that
guarantee unitarity.
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For a device connected to reservoirs by two leads, the Landauer–Büttiker formula relates
its conductance G to the transmission coefficient T by the expression G = (2e2/h̄)T . In
electronic transport, T is usually called the dimensionless conductance. When the entrance and
exit leads support N1 and N2 propagating modes or channels, respectively, the transmission T
reads

T (x) =
N1∑
a=1

N∑
b=N1+1

|Sab(x)|2 =
∑
a,b

σab(x) (1)

where we have introduced σab, the transition probability (apart from a kinematical factor this is
just the cross section) from channel b in one lead to channel a in the other lead. The parameter
x represents either the energy E, or an external parameter X such as a magnetic field, or both.
Without loss of generality we restrict our discussion to the case whereN1 = N2 = N/2 ≡ M .

The original problem of conductance fluctuations in a mesoscopic device is now cast
into a more generic one of transmission fluctuations of a quantum process where a particle is
chaotically scattered. Thus, this discussion is also of interest for transmission experiments with
irregular microwave cavities, ‘chaotic’ atoms and nuclei. Our goal is to use the semiclassical
theory to describe the statistical properties of the transmission as the parameter x is varied.
This information is contained in the average value of T (a two-point statistical measure of the
S-matrix elements) and in its autocorrelation function (a four-point function), defined as

(T , T ′) ≡ 〈T (x)T (x ′)〉 − 〈T (x)〉〈T (x ′)〉. (2)

The average is taken over x and x ′ keeping the difference |x − x ′| fixed. The transmission
autocorrelation function is directly related to the covariances of the transition probabilities

(T , T ′) =
M∑
a,c=1

N∑
b,d=M+1

(σab, σ
′
cd). (3)

The variance of T , var(T ), is the statistical measure of a fundamental phenomenon in
mesoscopic physics: for systems where quantum coherence is preserved the dimensionless
conductance displays fluctuations of order unity irrespective of sample size, provided
the dynamics is chaotic (or diffusive) and there are no tunnelling barriers hindering the
transmission. This phenomenon is known as ‘universal conductance fluctuations’ (UCF) [6].
Thus, a successful approximation scheme to explain UCF has to be accurate to the level of unity
for the variance of T . In the specific case of quantum dots, i.e. ballistic electronic cavities,
the random matrix theory [7, 8] and the supersymmetric method [9] are, so far, the successful
approaches to calculate var(T ).

The purpose of this paper is twofold. First we analyse a very simple statistical measure—
the average cross section—to show that the standard semiclassical S-matrix theory does not
achieve the required precision to be useful as a theory for UCF. In doing this, we indicate its
main sources of inaccuracy and discuss the main problems involved in improving the theory.
We then show how to fix the inaccuracies by making explicit use of the unitarity of the S-
matrix. This procedure is similar in spirit to those used in semiclassical studies of spectra of
closed systems [10]. It can be viewed as a proposal for a set of semiclassical scattering sum
rules to enforce well known exact symmetries of the S-matrix.

2. The semiclassical approach

We start with Miller’s semiclassical S-matrix formula [2] (now including transmission and
reflections):

S̃ab(E,X) =
∑
µ(a,b)

√
pµ(E,X) eiφµ(E,X)/h̄ (4)
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whereµ(a, b) labels the classical trajectories that start at channel b and end at channel a, φµ are
their reduced actions (with a Maslov phase included), and pµ stands for the classical transition
probability of going from a to b through the orbit µ [11] (here and throughout the paper the
tilde indicates that the semiclassical approximation is employed). It is implicit in the derivation
of equation (4) that the number of open channels must be much larger than one and that there
are no tunnelling barriers between the leads and the cavity. When the scattering is chaotic (and
the short-time dynamics does not significantly contribute to S) the domains of applicability of
the semiclassical theory and random matrix theory coincide and both approaches should be
comparable. In this regime the semiclassical approach provides the dynamical explanation for
the universality of the scattering fluctuations.

In general the semiclassical S-matrix is not exactly unitary at any given energyE. Indeed,
it is only upon energy averaging and for the case of broken time-reversal symmetry (BTRS),
that unitarity is automatically fulfilled. We now show this known result so as to present the
basic elements and approximations employed in this paper. The energy averaged semiclassical
cross section reads

〈σ̃ab〉 = 〈|S̃ab|2〉 =
∑
µ,ν

〈√
pµpν ei(φµ−φν)/h̄〉 . (5)

Here 〈· · ·〉 indicates an energy average within an energy window where the classical dynamics
presents little changes, nonetheless comprising many resonances. To compute the energy
average one neglects the energy dependence of the probabilities pµ and uses the diagonal
approximation. The latter says that, on average, only orbits having the same action are
correlated. If there are no symmetries present, this means that

〈
exp[i(φµ − φν)/h̄]

〉 = δµν .
Then

〈σ̃ab〉 =
∑
µ,ν

√
pµpν δµν =

∑
µ

pµ. (6)

The proof is completed by using the classical normalization condition [11]
N∑
a=1

∑
µ(a,b)

pµ = 1 (7)

which insures that
∑
a〈|S̃ab|2〉 = 1.

We shall assume that for any given entrance channel b, all exit channels a are equivalent,
i.e. ∑

µ(a,b)

pµ = 1

N
(8)

which yields

〈σ̃ab〉 = 1

N
. (9)

The assumption of equivalent channels is justified (in the BTRS case) if the particle typically
stays inside the interaction region long enough to be randomized, meaning that it becomes
equiprobable to be ejected through any outgoing channel. The analysis of the other limiting
case where time-reversal symmetry is preserved will be postponed to section 3.

In order to clearly explain why unitarity problems affect the semiclassical theory of
transmission fluctuations we introduce the object

1̃a ≡
N∑
b=1

σ̃ab =
N∑
b=1

∑
µ(a,b)

ν(a,b)

√
pµpν ei(φµ−φν)/h̄. (10)
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If the semiclassical S-matrix had been exact 1̃a = 1; instead one has 〈1̃a〉 = 1. The lack of
precision of the standard semiclassical scattering theory at the four-point level becomes evident
by analysing the variance (1̃a, 1̃b). The semiclassical approximation gives (1̃a, 1̃b) �= 0,
leading to a ‘unit fluctuation’ problem. To see this, using equation (4) we write(

1̃a, 1̃b
)

=
〈
N∑

c,d=1

∑
µ(a,c)

ν(a,c)

∑
µ′(b,d)
ν′(b,d)

√
pµpνpµ′pν ′ exp

[ i

h̄
(φµ − φν + φµ′ − φν ′)

]〉
− 1 (11)

so that the diagonal approximation yields(
1̃a, 1̃b

)
=

N∑
c,d=1

∑
µ(a,c)

ν(a,c)

∑
µ′(b,d)
ν′(b,d)

√
pµpνpµ′pν ′(δµνδν ′µ′ + δµν ′δνµ′)− 1. (12)

The first Kronecker δ product decouples the sums over orbits starting at channel c and ending
at a from those entering the scattering region through channel d and exiting through b. The
resulting double sum adds up to unity. The second product contains crossed terms which
vanish unless a = b and c = d . Equation (12) becomes(

1̃a, 1̃b
)

= δab
N∑
c=1

∑
µ(a,c)

ν(a,c)

pµpν = δab

N
. (13)

This inaccuracy is neither unexpected, nor large. However, it has important consequences for
the calculation of transmission fluctuations. This becomes evident by inspecting(

N∑
a=1

1̃a,
N∑
b=1

1̃b

)
=
(

N∑
a,c=1

σ̃ac,

N∑
b,d=1

σ̃bd

)
= 1 �= 0 (14)

which has the same double sum structure of the transmission variance and shows an inaccuracy
exactly of the order of the effect that we aim to describe.

Let us be more explicit and go back to the analysis of the transmission autocorrelation
function. Recalling equation (3) and assuming channels to be statistically equivalent we write

(T , T ′) = M2(σab, σ
′
ab) + 2M2(M − 1)(σab, σ

′
ac) +M2(M − 1)2(σab, σ

′
cd). (15)

Here we use the convention that different indices a and b in the covariances imply that a �= b.
This means that for the above equation b �= c in the second term of its RHS, and a �= c and
b �= d for the third one. We shall demonstrate below that, owing to unitarity, all three terms in
the RHS of equation (15) are of the same order of magnitude. However, within the diagonal
approximation, both the semiclassical covariances (σ̃ab, σ̃ ′

ac) and (σ̃ab, σ̃ ′
cd) are zero. Let us

admit that the semiclassical approach gives the correct result for the transmission probability
covariances to order 1/N2. Then, for a successful description of the transmission fluctuations,
the theory has to be improved to access the first non-vanishing order in the non-diagonal terms
(σab, σ

′
ac) and (σab, σ ′

cd), which are O(N−3) and O(N−4), respectively. Though desirable this
is not really necessary. The alternative scheme we propose is to bypass the explicit semiclassical
calculation of the non-diagonal covariances and use the unitarity of the S matrix to relate the
latter covariances to the diagonal one. Having expressed (T , T ′) in terms of (σab, σ ′

ab) alone,
we use the semiclassical approximation only at the very end.

3. Enforcing unitarity

The relations between diagonal and non-diagonal covariances can be easily obtained from( N∑
b=1

σab, σ
′
cd

)
= (1, σ ′

cd) = 0 (16)
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which follows from unitarity. To proceed further we have to separately analyse the cases where
either time-reversal symmetry is absent (BTRS) or present (TRS). This distinction is necessary
because the ‘elastic’ processes (a = b) and the ‘inelastic’ ones (a �= b) display different
statistical properties when time-reversal symmetry is preserved. Indeed it is well known
that due to quantum interference, time-reversal symmetry enhances the average reflection
probability 〈σaa〉 by a factor of two [12]. This can be understood semiclassically by noting
that in the TRS case there are pairs of orbits having the same action (time-reversal partners)
which contribute to σaa , thus interfering constructively to produce the factor two. Due to
this effect the classical equivalence of channels breaks down at the quantum level. In this
case the equivalence is only restored when time -reversal symmetry is broken, leading to the
considerations presented in section 2.

To illustrate the consequences of this phenomenon and the spirit of our scheme, let us
analyse 〈T (x)〉 in the crossover regime from TRS to BTRS. Recall that

〈T (x)〉 =
M∑
a=1

N∑
b=M+1

〈σab(x)〉 = M2〈σab(x)〉. (17)

Here x parametrizes a Hamiltonian change breaking time -reversal symmetry as x grows from
zero (TRS) to some critical value x∗ (BTRS). Unitarity relates diagonal and off-diagonal
averages:

1 = 〈σaa(x)〉 + (N − 1)〈σab(x)〉. (18)

This equation allows us to write 〈T 〉 in terms of 〈σaa〉, the average that is semiclassically
sensitive to time-reversal effects, to obtain

〈T (x)〉 = N2

4(N − 1)
(1 − 〈σaa(x)〉). (19)

For x = 0 the elastic enhancement is maximal and hence 〈T (x)〉 takes its smallest value.
In mesoscopic physics, to distinguish from strong localization which is a phenomenon very
different in origin, the reduction of transmission due to TRS is called the weak localization
peak. Up to this point equation (19) is an exact expression. The semiclassical result is
obtained by calculating 〈σaa(x)〉 from Miller’s formula. For x representing a magnetic field,
the semiclassical approach gives a Lorentzian shape for the weak localization peak [13] in
agreement with RMT [14]. The amplitude of the weak localization correction can be readily
obtained recalling that 〈σ̃aa(0)〉 ≈ 2/N and 〈σ̃aa(x � x∗)〉 ≈ 1/N , so that

〈T̃ (0)〉 − 〈T̃ (x∗)〉 = − 1
4 (20)

again in agreement with random matrix theory [7]. The discussion above is not entirely original
and was inspired by the pioneer semiclassical study of the weak localization peak in ballistic
cavities developed by Baranger and collaborators [13]. Based on the same strategy presented
above, we are now ready to understand the UCF problem.

3.1. Transmission fluctuations in systems with broken time-reversal symmetry

In this case all S matrix elements are statistically equivalent. In order to express (T , T ′) in
terms of (σab, σ ′

ab) it suffices to consider the following two independent unitarity equations:
N∑
b=1

(σab, σ
′
ac) = 0

N∑
b=1

(σab, σ
′
cd) = 0 (21)

(c �= a in the second equation). The above relations can be reduced to

(σac, σ
′
ac) + (N − 1)(σab, σ

′
ac) = 0 (σad, σ

′
cd) + (N − 1)(σab, σ

′
cd) = 0 (22)
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(the convention about indices being the same as in equation (15)). Notice that these relations
are not satisfied in the diagonal approximation. At the semiclassical level equations (21)
and (22) can be regarded as sum rules that go beyond the diagonal approximation. Insertion
of equations (22) into (15) readily renders

(T , T ′) = M4

(2M − 1)2
(σab, σ

′
ab). (23)

As in the two-point analysis this equation is exact.
Now we are ready to employ the semiclassical approximation to compute (σab, σ ′

ab). Let
us first consider the case where x stands for the energy, i.e.

(σab, σ
′
ab) = Cab(ε) ≡

〈
σab

(
E +

ε

2

)
σab

(
E − ε

2

)〉
E

− 〈σab〉2
E . (24)

The semiclassical autocorrelation function C̃ab(ε) can be calculated for classically small values
of ε, i.e. for energy differences such that the classical perturbation theory holds. In this case
one keeps the stability coefficients constant and expands the actions to first order in ε, i.e.
φµ(E ± ε/2) ≈ φµ(E) ± τµε/2; here τµ is the time the particle takes to travel from channel
b to channel a along the orbit µ. After the diagonal approximation we obtain〈
σ̃ab

(
E +

ε

2

)
σ̃ab

(
E − ε

2

)〉
=
∑
µ(a,b)

ν(a,b)

∑
µ′(a,b)
ν′(a,b)

√
pµpνpµ′pν ′(δµνδν ′µ′ + δµν ′δνµ′)

× exp

[
iε

2h̄

(
τµ − τν + τµ′ − τν ′

)]
. (25)

Using the same arguments employed after equation (12) we arrive at

C̃ab(ε) =
∑
µ(a,b)

ν(a,b)

pµpν exp
[
i
ε

h̄
(τµ − τν)

]
. (26)

According to the analogue of the Hannay–Ozorio de Almeida sum rule for open systems [15],∑
t�τµ�t+δt

pµ = γ

N
e−γ t δt (27)

where
∑
t�τµ�t+δt pµ is the sum of all classical transition probabilities from channel a to b

through trajectories within a small time interval [t, t + δt], where δt is classically small. The
exponential is determined by the inverse escape time γ , later to be associated to an energy
width � = h̄γ . Replacing the sum over orbits by an integral over the time, we finally obtain

C̃ab(ε) = 1

N2

1

1 + (ε/�)2
. (28)

Before commenting on this result, we shall generalize it by accounting for an external
parametric change X in the Hamiltonian. For instance, in (mesoscopic physics) experiments
X is frequently an external magnetic field. The strategy to compute the generalized correlation
function is, as above, based on classical perturbation theory. By expanding the reduced action
to first order inX, we have to deal withQµ ≡ ∂φµ/∂X. A full account of the technical details
involved in calculating the parametric correlation can be found in [16]. The basic step though
is to compute the time average〈

eiQµδX/h̄
〉
δt

= exp

[
−δX

2

2h̄2 〈Q2(t)〉δt
]
. (29)

Since 〈Q2(t)〉δt grows diffusively with time, i.e. 〈Q2(t)〉δt = αt , the autocorrelation function
becomes

C̃ab(ε, δX) = 1

N2

1

[1 + (δX/Xc)2]2 + (ε/�)2
(30)
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with

X2
c ≡ 2h̄�/α. (31)

Then the semiclassical result that includes unitarity restrictions is

(T̃ , T̃ ′) = 1

16

1

[1 + (δX/Xc)2]2 + (ε/�)2
+ O(1/N). (32)

Remarkably, this result agrees exactly with the dimensionless conductance autocorrelation
function for open ballistic dots in the limit N � 1 obtained by Efetov [9] using the
supersymmetric technique. The agreement also extends to the structure of the parameter
Xc (31) if one relates α to the level velocity of closed systems as defined in [16]. In this respect
the semiclassical approach is complementary to random matrix theories, since it provides a
dynamical interpretation for the nonuniversal quantities Xc and �.

3.2. Systems with time-reversal symmetry

Now the S matrix is symmetric and the statistical properties of diagonal and off-diagonal
elements are different. Hence we need to write down two additional unitarity relations, as
compared with the BTRS case, in order to single out the elastic case separately:
N∑
b=1

(σab, σ
′
aa) = 0

N∑
b=1

(σcb, σ
′
aa) = 0

N∑
b=1

(σab, σ
′
ac) = 0

N∑
b=1

(σab, σ
′
cd) = 0

(33)

(c, d �= a). In terms of the basic covariances, the above system of equations is rewritten as

(σaa, σ
′
aa) + (N − 1)(σaa, σ

′
ab) = 0

(σaa, σ
′
ab) + (σaa, σ

′
bb) + (N − 2)(σaa, σ

′
bc) = 0

(σab, σ
′
ab) + (σaa, σ

′
ab) + (N − 2)(σab, σ

′
ac) = 0

(σaa, σ
′
bc) + 2(σab, σ

′
ac) + (N − 3)(σab, σ

′
cd) = 0

(34)

where the channel index convention is that following equation (15). The only difference with
the BTRS case is the factor 2 in the last equation, which is a consequence of the symmetry of S.
As in the preceding subsection, we would like to express all covariances in terms of (σaa, σ ′

aa)

and (σab, σ ′
ab) which are the only nonzero ones in the diagonal approximation. Regrettably,

we have more unknowns than equations, and it is not possible to obtain an exact equation like
equation (23). However, as we are only interested in a relation which is correct to leading
order in 1/N , it suffices to consider the simplified system

(σab, σ
′
ab) +N(σab, σ

′
ac) = O(N−3) 2(σab, σ

′
ac) +N(σab, σ

′
cd) = O(N−4) (35)

which is obtained from the last two equations in (34) by keeping only the leading terms. These
relations are the TRS analogues of (22) and lead to

(T , T ′) ≈ M2

2
(σab, σ

′
ab). (36)

Semiclassically, time-reversal effects only manifest themselves in the diagonal covariances
(σaa, σ

′
aa). The correlator (σ̃ab, σ̃ ′

ab) is the same as that for the BTRS case. Thus, at
the semiclassical level, the effect of time-reversal symmetry is to enhance the transmission
fluctuations by a factor of two (cf equation (23)), without changing the shape of the correlation
function, that is

(T̃ , T̃ ′) = 1

8

1

[1 + (δX/Xc)2]2 + (ε/�)2
+ O(1/N). (37)
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We are not aware of any study of the transmission autocorrelation function for the TRS case
using the supersymmetric method. For technical reasons it is much simpler to obtain the
variance var(T ) using random matrix theory. This result is known [7] and, for N � 1, agrees
with our semiclassical calculation

var(T̃ ) = 1
8 . (38)

4. Concluding remarks

Studies of spectral fluctuations of closed chaotic systems have shown that the diagonal
approximation should start to fail when the orbits involved have periods of the order of the
Heisenberg time τH. In scattering systems, the contribution of orbits with periods larger than
the mean escape time τe is negligible. Given that in the semiclassical regime τe � τH it is
generally accepted that the diagonal approximation should be unproblematic for scattering
systems.

However, we have shown that the standard semiclassical approach fails to describe the
transmission fluctuations because the diagonal approximation does not preserve the unitarity of
the S matrix to the required precision. One way to circumvent this problem, perhaps the most
satisfactory from a theoretical point of view, is to improve the semiclassical theory to include
correlations between different orbits. Alternatively, we have shown that the unitarity of the S
matrix can be used to express the transmission autocorrelation function in terms of transmission
probabilities. Such expression contains some information about unitarity allowing the standard
semiclassical approximation to be invoked resulting in a theory consistent with UCF.

Other difficulties are also encountered when calculating the transmission correlations:
the semiclassical transmission correlator is not translationally invariant. For instance, this is
manifest in the fact that

〈T̃ (E)T̃ (E + ε)〉 �= 〈T̃ (E + ε/2)T̃ (E − ε/2)〉 (39)

which can easily be checked by inspection. In our calculations we preferred to use
〈T̃ (E + ε/2)T̃ (E − ε/2)〉 because it is explicitly real. This choice is consistent with the
spirit of this paper, i.e. all information about exact quantum symmetries must be used in trying
to compensate for the shortcomings of the semiclassical S matrix.
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